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Overview

Goal: Develop a general framework and a corresponding continuation algorithm to
identify curves in 2D parameter space that distinguish dynamically different patterns.
Our approach:

Input: Initial-value problem solvers with random initial conditions;

Feature: Number/roundness of a-shape geometry;
Metric: Wasserstein distance defined in feature space;

Continuation: Find maxima in parameter space.
Novelty: Purely data-driven, allowing for automatic and efficient bifurcation tracing
with limited prior knowledge of the underlying system.
Application: Snaking, homogeneous states, spots, stripes, and spiral waves.
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Figure: Bifurcation curve in 2D parameter space (example: Find maxima of f(p) via
Brusselator). Color code: average roundness of a-shapes. To quadratic approximation;
quantify difference between patterns, we use Wassterstein
distance between histograms of pattern statistics.

Update parameter and
direction for next step.

Example 1: Turing patterns in 2D Swift-Hohenberg model [2]

Features: number/roundness of ¢-shapes constructed based on sublevel sets
of PDE solution.
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(a) Comparison to simulation (b) Comparison to reference

Figure: Curves separating (1) homogeneous vs spots (black); (2) spots
vs stripes (blue), compared to simulation and Maxwell curve.

Example 2: Tip motion of spiral waves in Barkley model [3]

Features: thickness/curvature of a-shapes constructed based on tip trajectory.
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(a) Comparison to simulation (b) Comparison to reference

Figure: Curves separating (1) homogeneous vs rigid rotation (black);
(2) rigid rotation vs meander (blue and red); (3) meander with different
directions (purple), compared to simulations/references.
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